

Nonlinear hydrodynamic instability in eccentric astrophysical discs with vertical structure

Aaron Wienkers and Gordon Ogilvie

Department of Applied Mathematics and Theoretical Physics



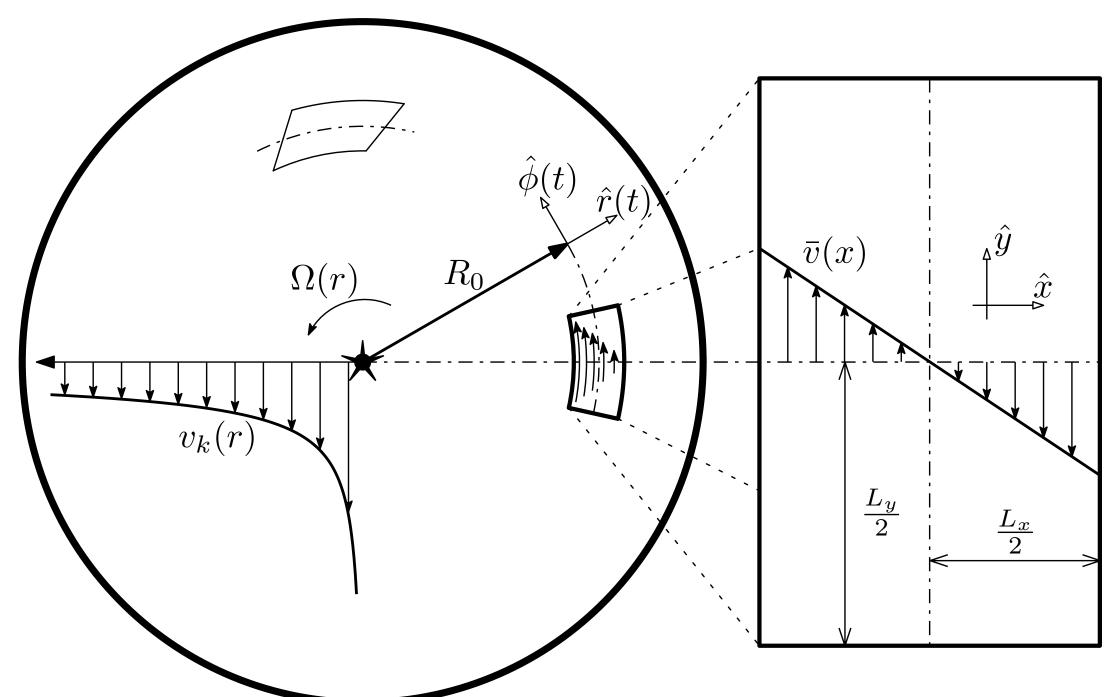
Motivation: Accretion Discs



Artistic Rendering by M. Garlick

- Classical theory assumes thin, circular discs (Pringle 1981)
- Eccentricity may be driven by
 - Anisotropic accretion onto the disc
 - Secular interactions with embedded planets
 - Mean-motion (parametric) resonance with the tidal potential of a circular companion (Whitehurst 1988)
- How are these Lindblad resonances saturated?
- What dynamics are excited inside an eccentric disc?

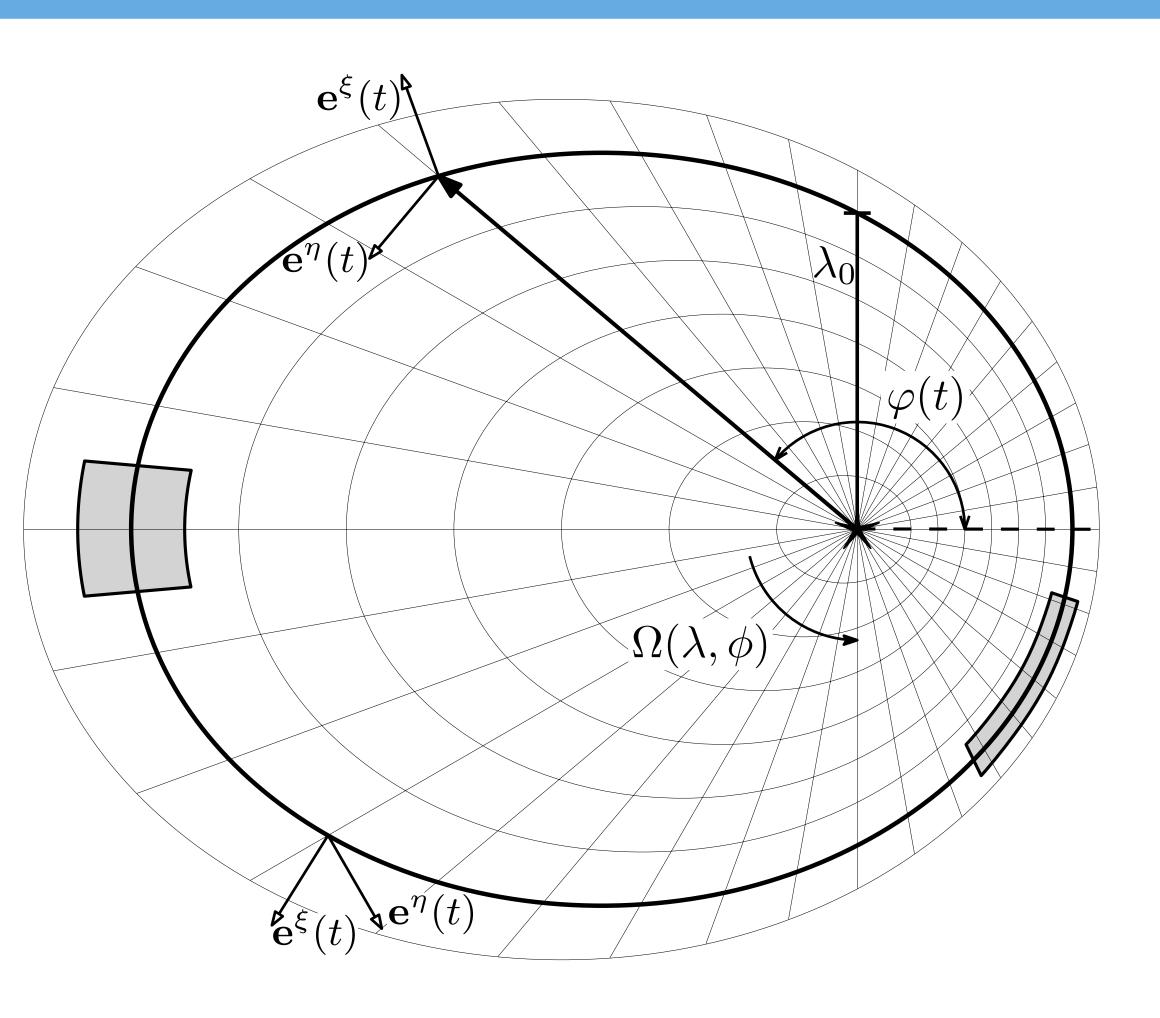
Local "Shearing Box" Model of a Circular Disc



- Useful for studying local disc phenomena
 - Computationally cheaper
 - More experimental control
- Enter a co-orbiting and rotating frame at R₀
- Make an expansion in the local coordinates

$$D\mathbf{v} = -\frac{1}{\rho}\nabla p - 2\Omega_0\hat{\mathbf{z}} \times \mathbf{v} + 2q\Omega_0^2x\hat{\mathbf{x}} - \Omega_0^2z\hat{\mathbf{z}}$$
Coriolis Effective Tidal Acceleration

Local Model of an *Eccentric* Disc



- New generalised coordinates for the disc, (λ, ϕ, z)
 - Parameterised by $e(\lambda)$ & $\phi_0(\lambda)$
- Enter a co-orbiting frame $(\lambda_0, \phi(t), 0)$
- Expand in the local coordinates (ξ, η, ζ)
 - Time-varying metric in a non-orthogonal local coordinate system
- Generalisation of the cartesian shearing box!

Governing Equations for the Local Eccentric Disc Model

Numerical Solution:

- Simplify by assuming local axisymmetry: 2.5D
- Use *co-variant* azimuthal momentum equation
- 2nd Order FVM Solver

$$D\rho = -\rho(\Delta + \partial_{\xi}v^{\xi} + \partial_{z}v^{z})$$

$$Dv^{\xi} = -\frac{1}{\rho}g^{\lambda\lambda}\partial_{\xi}p - 2\Gamma^{\lambda}_{\lambda\phi}\Omega v^{\xi} - 2\Gamma^{\lambda}_{\phi\phi}\Omega v^{\eta}$$

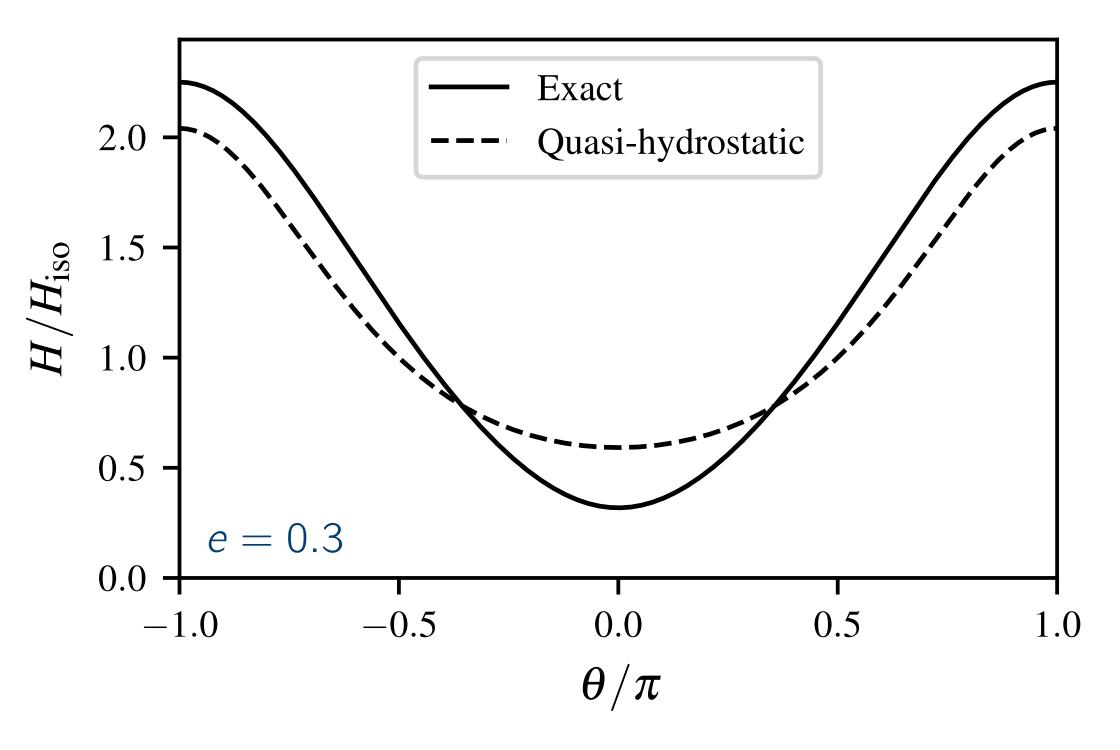
$$Dv_{\eta} = \left(g_{\phi\phi}\Omega_{\lambda} + \Omega\left(g_{\phi\phi}\Gamma^{\phi}_{\lambda\phi} - g_{\lambda\lambda}\Gamma^{\lambda}_{\phi\phi} - g_{\lambda\phi}\Gamma^{\phi}_{\phi\phi}\right)\right)v^{\xi} + g_{\phi\phi}\Omega_{\phi}v^{\eta}$$

$$Dv^{z} = -\Phi_{2}z - \frac{1}{\rho}\partial_{z}p$$

$$Dp = -\gamma p(\Delta + \partial_{\xi}v^{\xi} + \partial_{z}v^{z})$$

$$\Delta \equiv J^{-1}\partial_{\phi}(J\Omega)$$

Horizontally Invariant Laminar Solutions

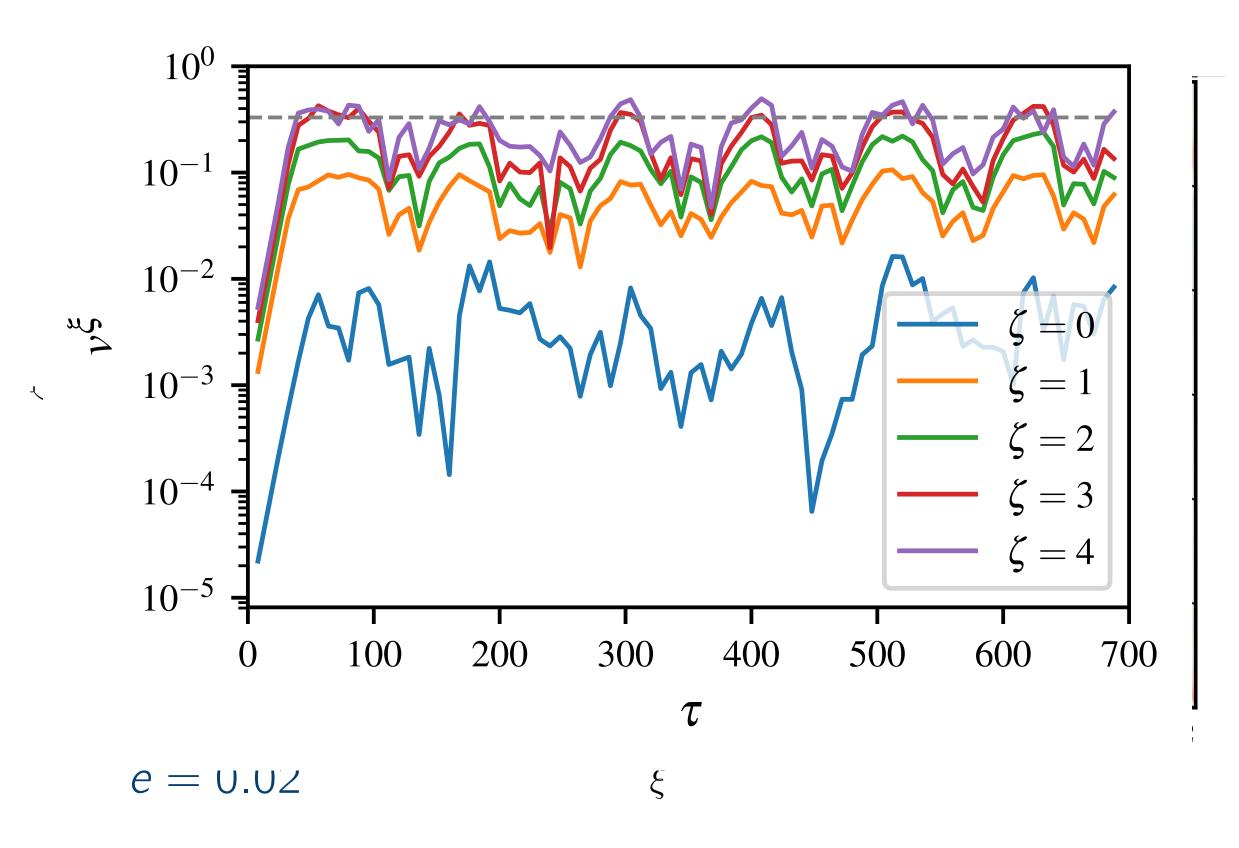


- Globally-stationary solutions appear locally as a vertical "breathing" mode
- Similarity solution in $\zeta \equiv z/H$ $\ddot{H} = -\Phi_2 H + \frac{c_s^2}{H}$
- Extreme convergence near pericentre with increasing eccentricity
- ullet Transform equations into ζ coordinate
 - → Stationary equilibrium solution!

Parametric Instability of Inertial Waves

- Small-scale inertial waves couple with the eccentric mode
 - Resonance criterion: $\omega = \frac{m}{2}\Omega$
- Strongest resonance corresponds to a radial standing wave with $k_{\xi} = 3/2$
- Linear growth rate for an isothermal disc: $\sigma = 3/4$
 - vs Papaloizou (2005) without vertical structure, $\sigma = 3/16$
- Never previously been observed in numerical simulations
 - Global simulations were either 2D or had too limited of spatial resolution

Nonlinear Saturation by Inertial Wave Breaking



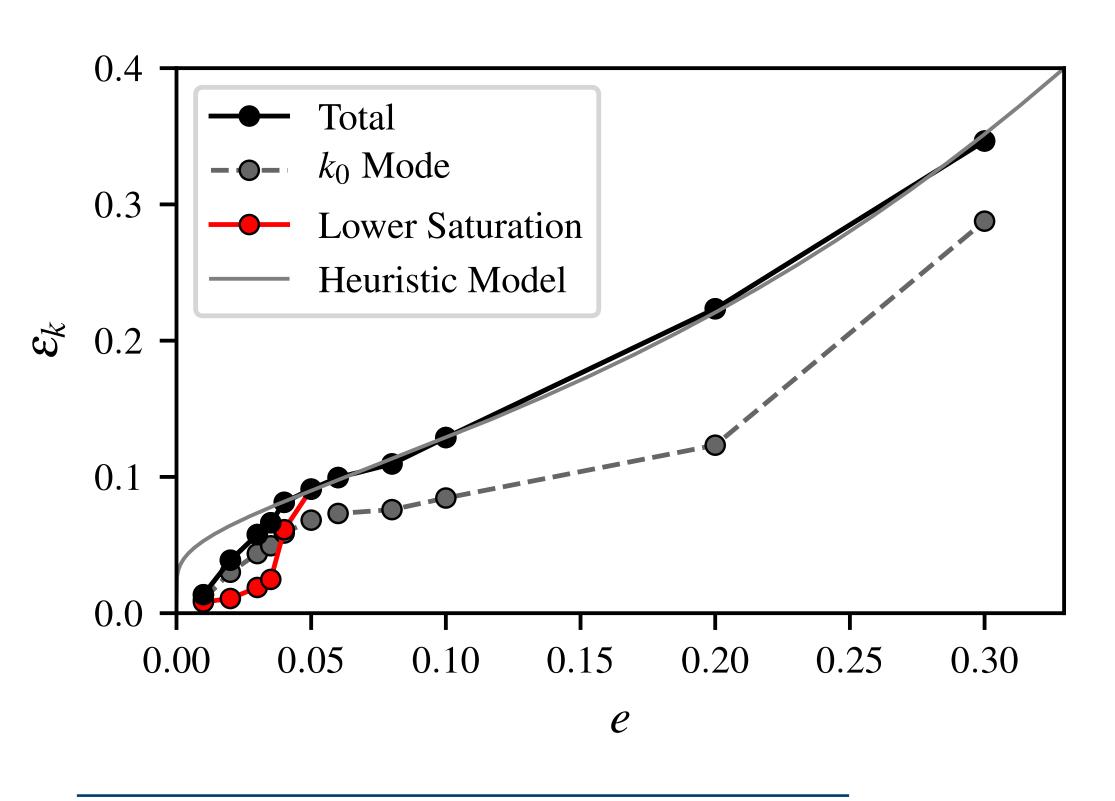
- Initialise the simulation with the exact linear inertial perturbation
- Observe linear growth in agreement with theory
- Inertial waves break when they locally violate the Rayleigh stability criterion:

$$\hat{v}_{\rm crit}^{\xi} = \omega/k_{\xi} = 1/3$$

• From the profile of the vertical mode,

$$\zeta_{\text{crit}} = \frac{\omega}{k_{\xi} \hat{v}_{0}^{\xi}} e^{-\sigma t}$$

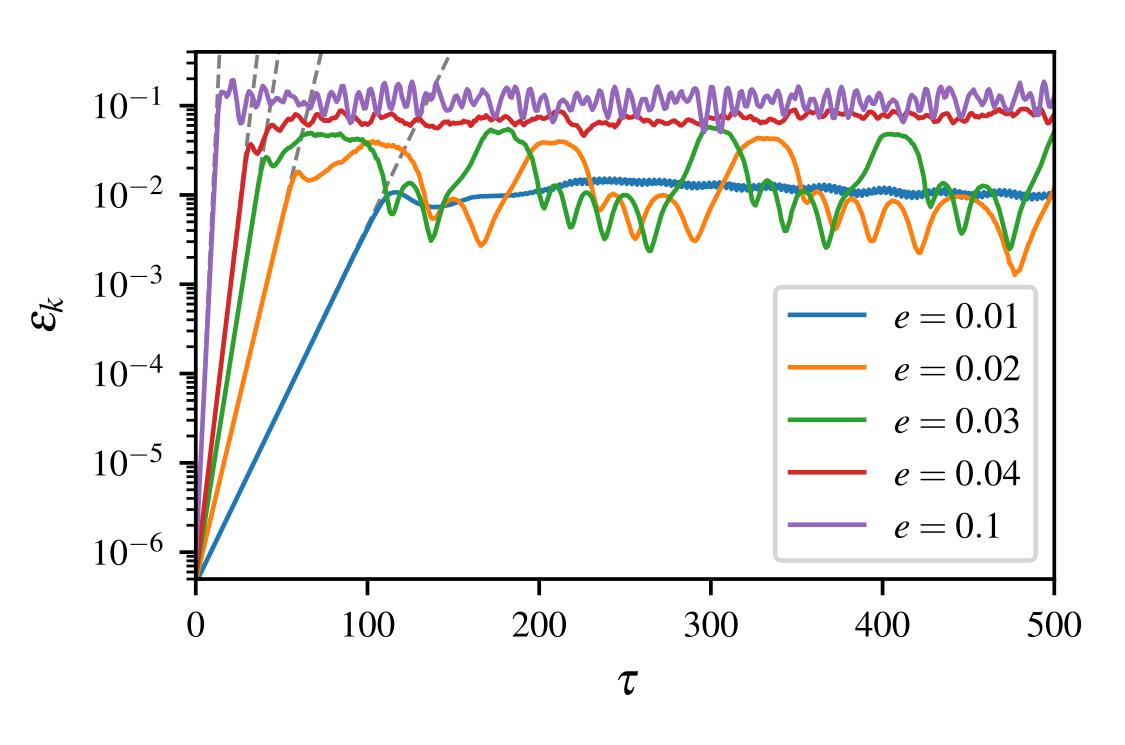
Modelling Energy Transfer at Saturation



Wienkers & Ogilvie, 2017

- Assume statistically time-stationary turbulence in spectral equilibrium
- Vertical energy balance:
 - Energy injection from eccentricity into k_0
 - ullet Turbulent dissipation localised above some $\zeta_{\rm crit}$
 - ullet Below ζ_{crit} inertial waves remain linear
 - Far above ζ_{crit} the density is too low
- ullet Typical eccentricity decay times around 50–100 ${\mathcal P}$

Generation of Limit Cycles by Zonal Flows

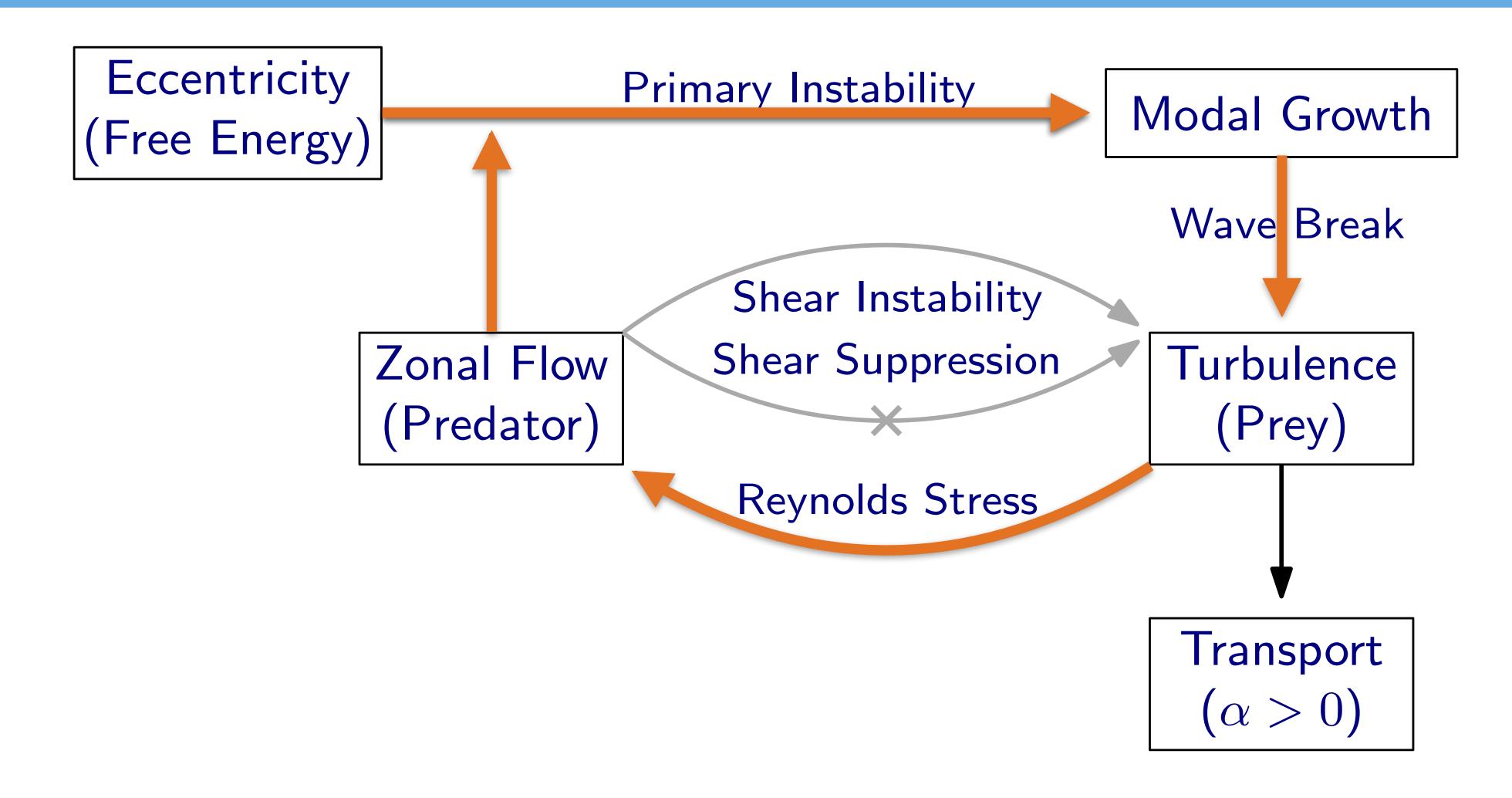


- Disagreement for $e \approx 0.03$ attributed to a sub-critical Hopf bifurcation due to zonal flows
- Background zonal shear modifies epicyclic frequency

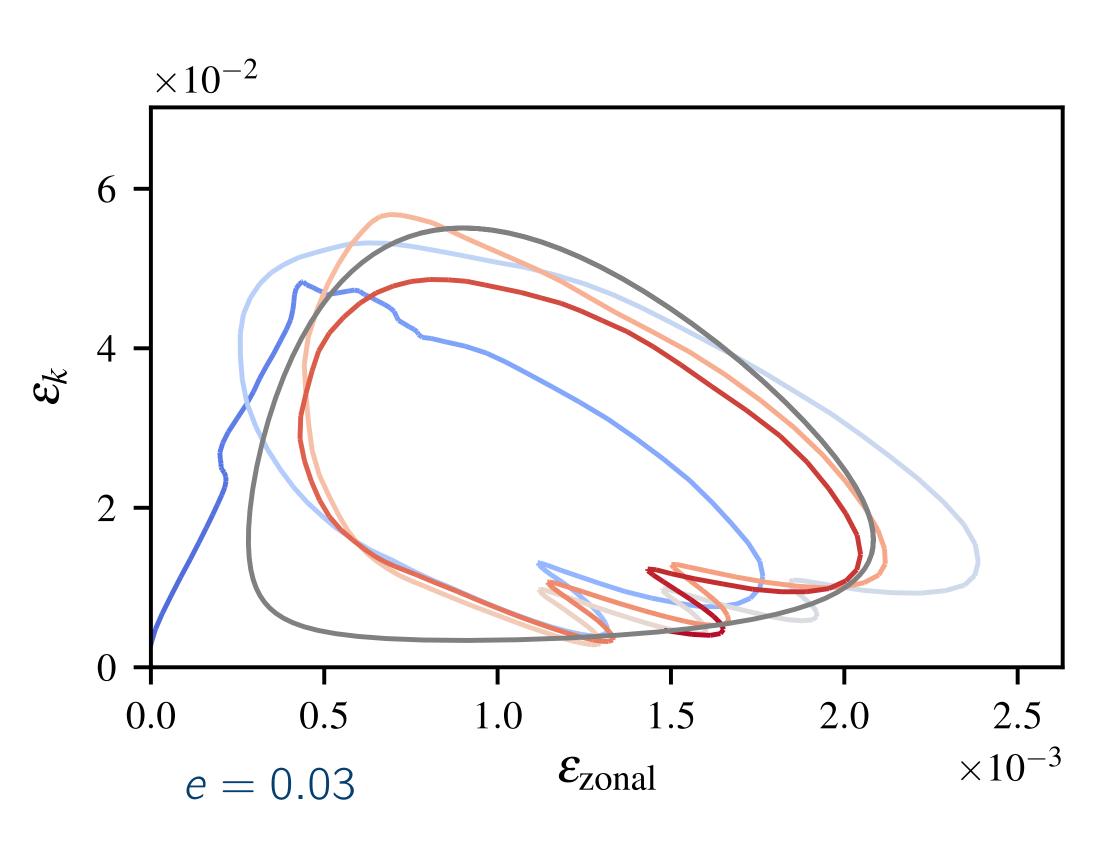
$$\kappa^2 = 2\Omega \left(\frac{1}{2} \Omega + R \partial_{\xi} v_{\text{zonal}} \right)$$

- → Knocks off of parametric resonance!
- The zonal flows are generated by the saturated turbulent stresses, and so are self-regulating

Overview of the Energy Pathway & Feedback



Activator-Inhibitor Model of the Feedback



- Energy growth based on Floquet analysis giving finite bandwidth of instability (Ogilvie & Barker, 2014)
- Parameterised zonal flow growth and large-scale damping:

$$\partial_{\tau} \varepsilon_{k} = \sigma_{k} \varepsilon_{k} - \frac{\sigma_{k}}{2w^{2}} \varepsilon_{k} v_{\text{zonal}}^{2}$$

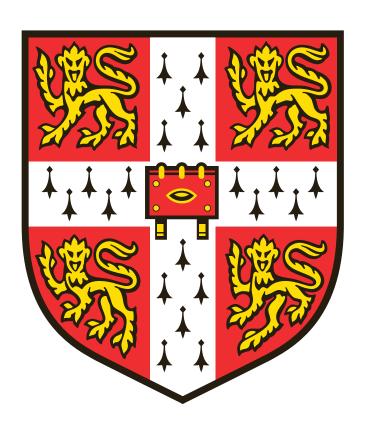
$$\partial_{\tau} v_{\text{zonal}} = -c_{\text{damp}} v_{\text{zonal}} + c_{\text{eat}} \sqrt{\varepsilon_{k}} v_{\text{zonal}}$$

• Cannot model the short-circuit feedback from the shear instability of zonal flows directly feeding into turbulence

Conclusions

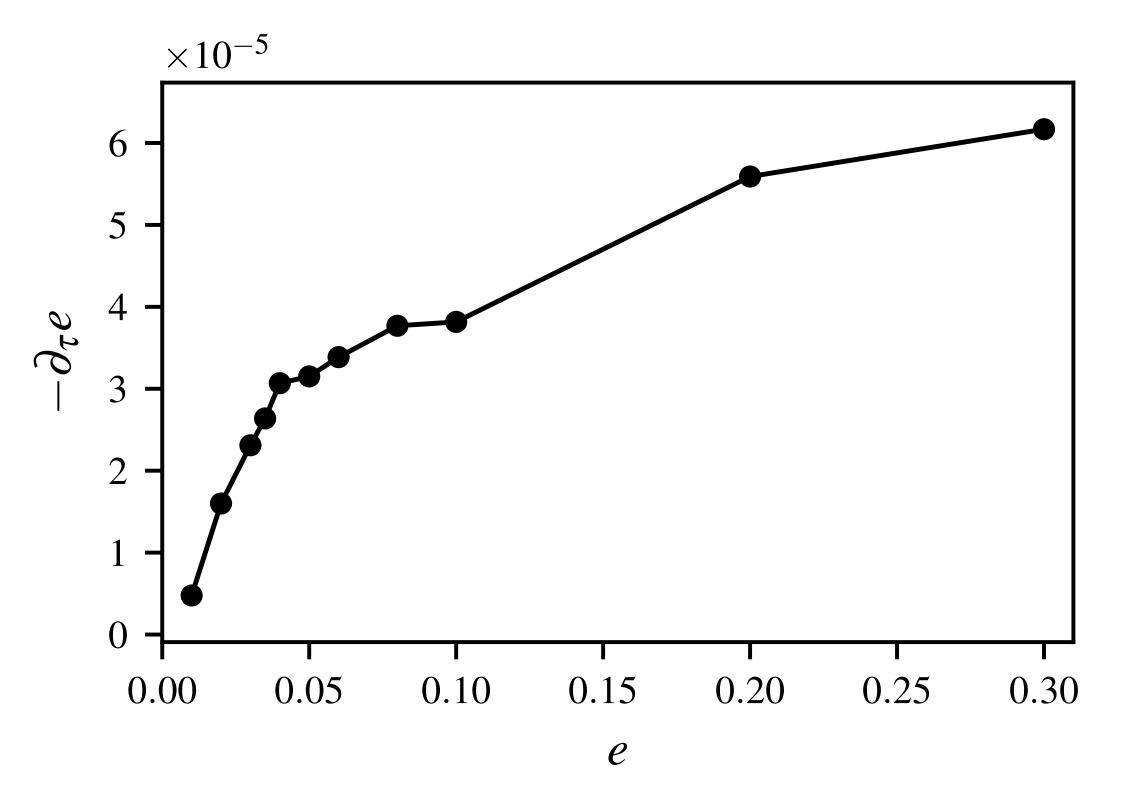
- Generalised the popular cartesian shearing box model to an eccentric disc
- Vertical disc structure is critical to both linear stability and saturation
 - Physically separates the energy sourcing near the mid-plane and localises wave-breaking around $\zeta_{\rm crit}$
- Rapid decay of eccentricity during saturation and self-regulation by zonal flows results in intermittency suggestive of outbursts
- This parametric instability may also be active in the MRI stable regions of protoplanetary and protostellar discs

Acknowledgements



Questions?

Eccentricity Decay Rate



Assume a steady alpha-disc radial profile,

$$\sum \propto r^{-3/2}$$

$$P \propto r^{-3/2}$$

ullet The $T^{\lambda\phi}$ stress terms then cancel exactly giving

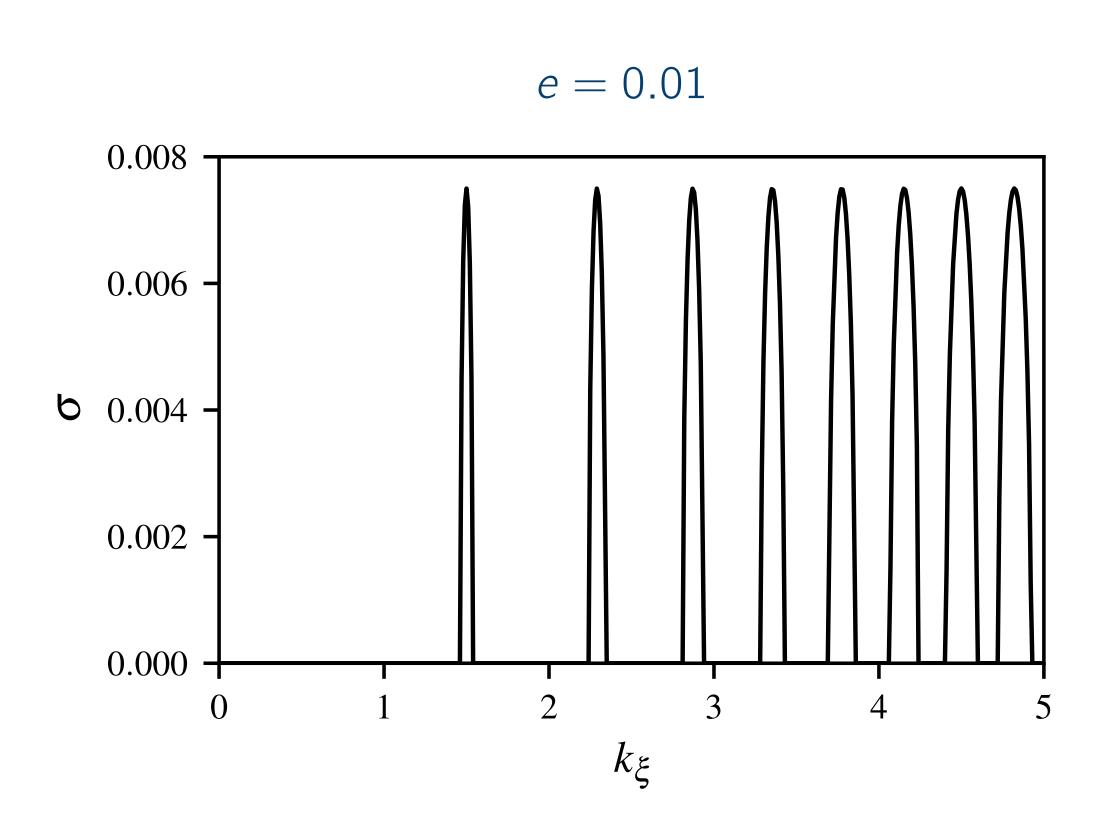
$$\ell_0 \mathcal{M} \partial_t e = \iint J \sin \theta \left(-\frac{1}{2} R_{\lambda} T^{\lambda \lambda} + R^2 T^{\phi \phi} \right) \Omega \, \mathrm{d}t \, \mathrm{d}z$$

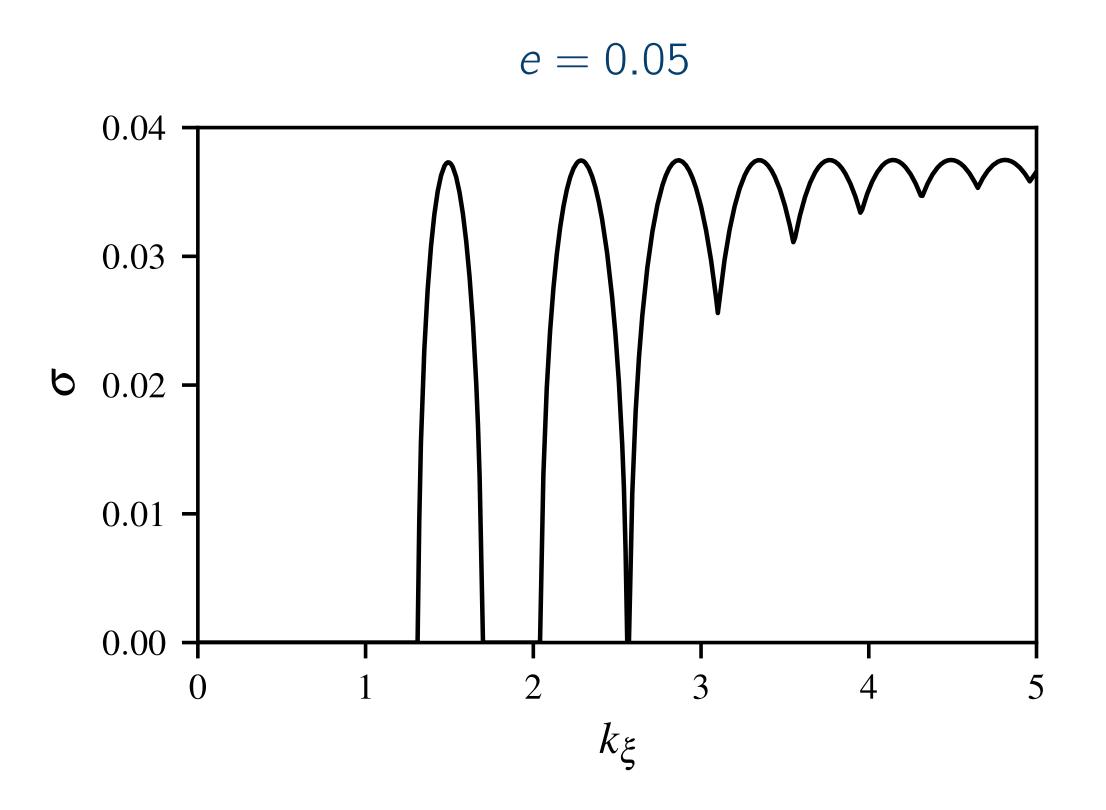
Alpha Viscosity

To generalise the alpha-viscosity to an eccentric disc, the transport of angular momentum must be described by the internal torque,

$$\alpha = -\frac{\iint JR^2T^{\lambda\phi} \,\mathrm{d}\varphi \,\mathrm{d}z}{\iint J\lambda_0 p \,\mathrm{d}\varphi \,\mathrm{d}z}$$

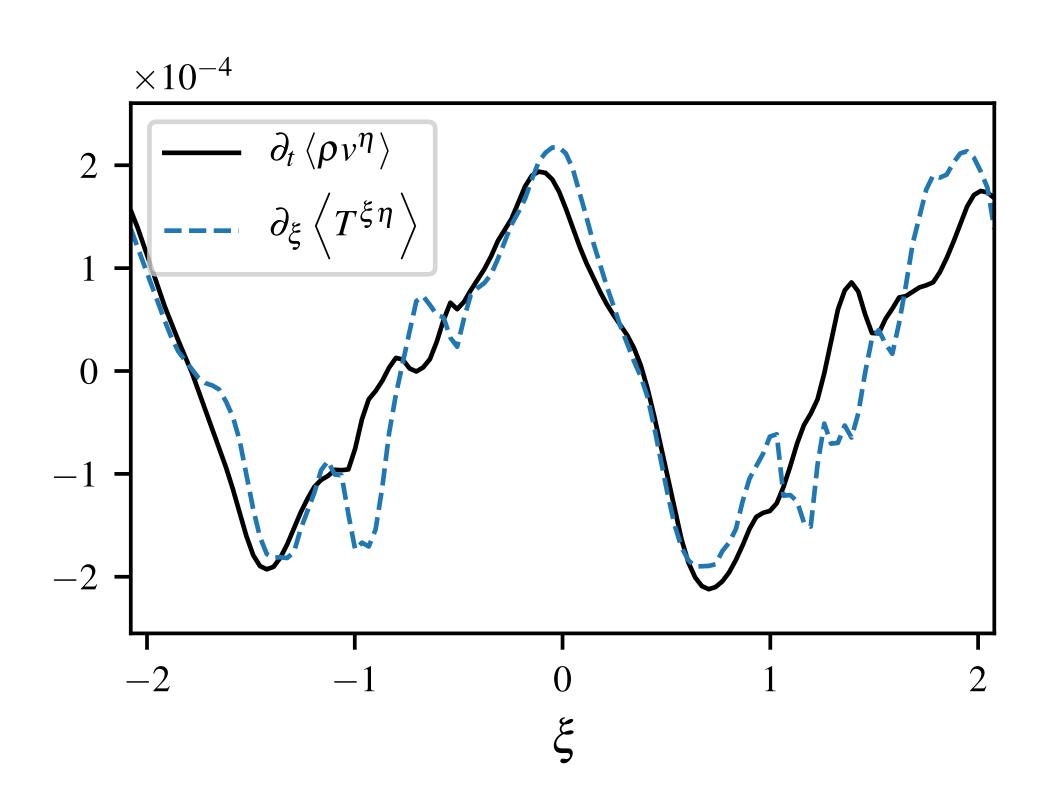
Floquet Stability Analysis

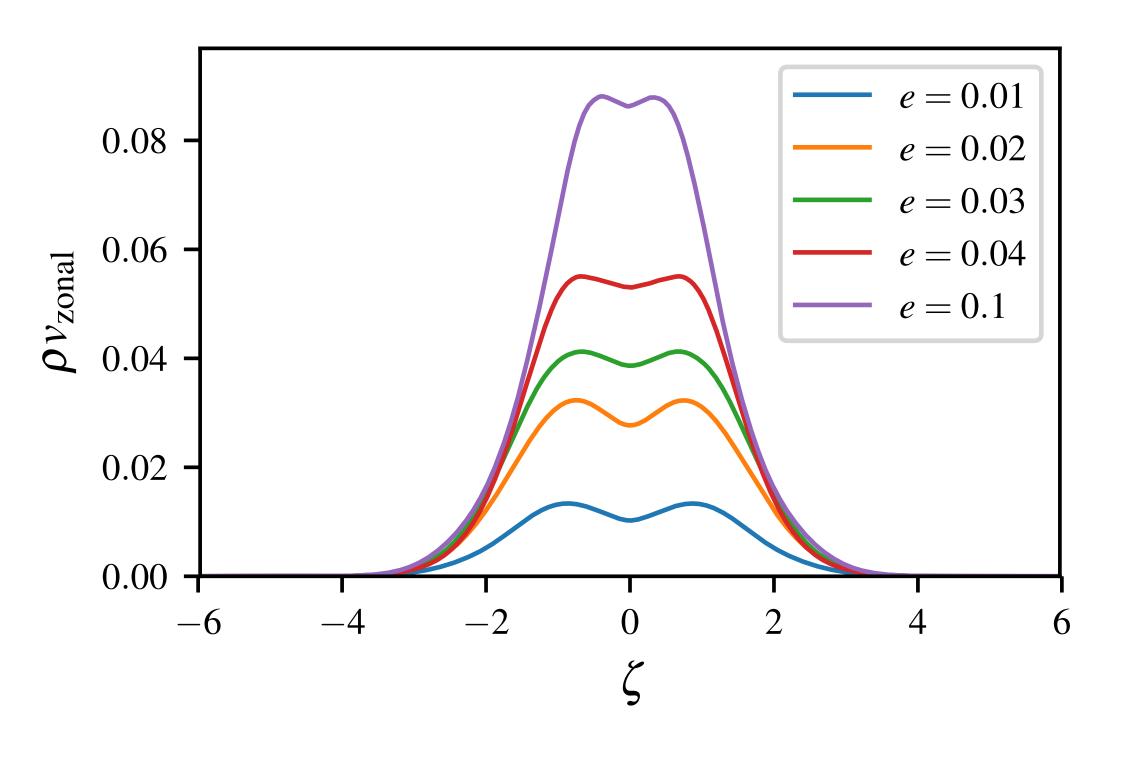




Barker & Ogilvie, 2014

Structure of Zonal Flows





Phase Slices of the Hopf Bifurcation

