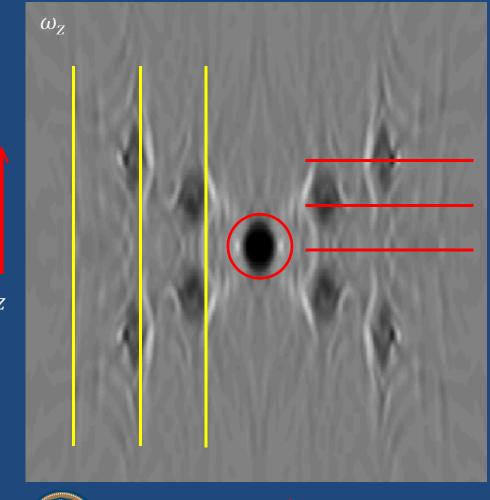
The Role of Interactions between Waves and Baroclinic Critical Layers in Zombie Vortex Self-Replication

Chung-Hsiang Jiang¹, Suyang Pei¹,
Pedram Hassanzadeh²,
Aaron Wienkers¹, Caleb Levy¹
Philip S. Marcus¹

¹University of California, Berkeley ²Harvard University

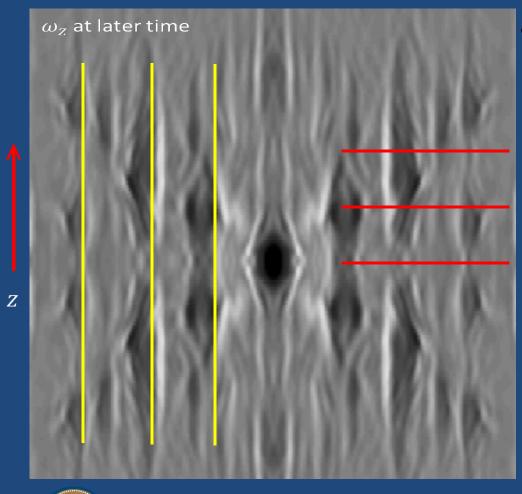
66th Annual Meeting of the APS DFD
Pittsburgh, PA
25 November 2013

Motivation: Zombie Vortices in Plane Couette Flow Plus Stratification



- 3D Boussinesq equation
- Plane Couette flow with velocity $\overline{V_x} = \sigma y$
- Rotation $\Omega \hat{z}$
- Coriolis parameter $f = 2\Omega$
- Stably Stratified in vertical direction with Brunt-Väisälä frequency N(z)

Motivation: Zombie Vortices in Plane Couette Flow Plus Stratification



- Vortex lattice structure
- Three time scales characterized by $f \sim N \sim |\sigma|$
- Lack of explicit length scale
- But clearly see the uniform horizontal and vertical spacing

Goal

- Horizontal and vertical spacing of the lattice structures determined by locations where waves and critical layers have the same stream-wise wave number (n_x) interact at
 - Need to derive dispersion relation of linear wave with large shear
 - Large, we mean $f \sim N \sim |\sigma|$

Poincarè Waves with Variable N(z) and No Shear

- Plane wave: $e^{i(\underline{k}\cdot\underline{x}-\omega t)}$, WKB in z-direction
 - Dispersion Relation

$$\omega^{2} = \frac{N^{2}(z) k_{\perp}^{2}}{k^{2}} + \frac{f^{2} k_{z}^{2}}{k^{2}}$$

Local geometric form:

$$\tan^2 \theta \approx (\omega^2 - f^2)/(N^2(z) - \omega^2)$$

- θ : the angle measured from horizontal plane
- Exact solution if $N(z) = N_0$ is constant

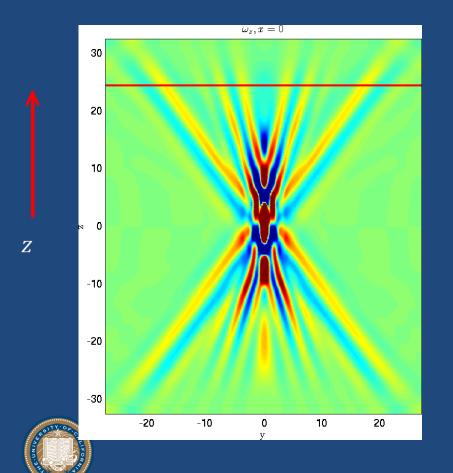
Poincarè Waves with Variable N(z) and No Shear

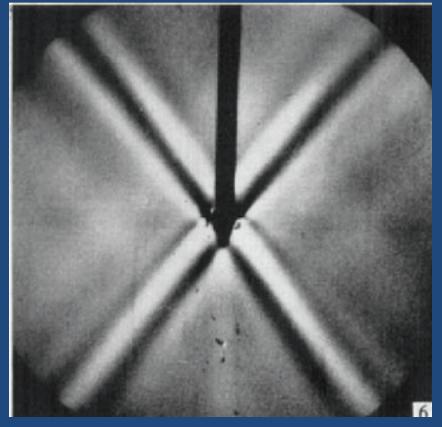
- Not depends on wave vector magnitude k but on wave vector direction only
 - Allowed frequency ranges:
 - $f^2 \le \omega^2 \le N^2(z)$ internal gravity wave branch
 - $N^2(z) \le \omega^2 \le f^2$ inertial wave branch
 - St. Andrew's cross in two dimensional and conical wave in three dimensional for constant N_0

Poincarè Waves and No Shear

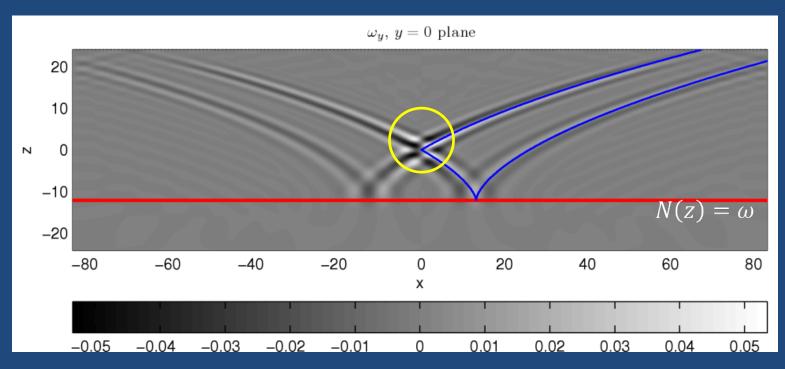
3D Nonlinear Simulation with a numerical wave generator

2D Experiment by Mowbray and Rarity $N_0/f = 1/4$ and $\sigma = 0$ Constant N_0 and f = 0, $\sigma = 0$





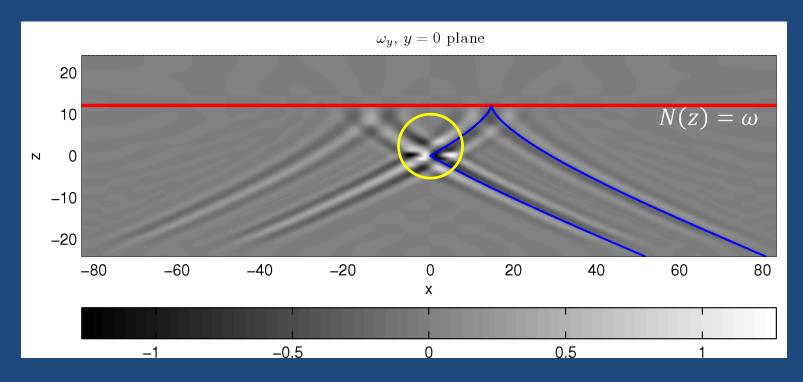
Poincarè Waves: No Shear with N(z)Internal Gravity Wave Branch



- Wave generator forcing at constant $\omega = \omega_c$
- $f^2 \le \omega^2 \le N^2(z)$
- $N(z) = 2 \omega_c (1+z/L_z)$
- f = 0

Blue: theoretical ray paths predicted by WKB theory Red: Below it, $\omega > N(z)$, the forbidden region (evanescent waves)

Poincarè Waves: No Shear with N(z)Inertial Wave Branch



• Wave generator forcing at constant $\omega = 3 \ \omega_c$

•
$$N^2(z) \le \omega^2 \le f^2$$

•
$$f = 2 \omega_c \sqrt{8/3}$$

Blue: theoretical ray paths predicted by WKB theory Red: Above it, $\omega < N(z)$, the forbidden region (evanescent waves)

With Background Shear WKB in both y- and z-directions

- Dispersion Relation: $\omega = \omega_0 + \underline{k} \cdot \overline{\underline{V}}$
 - Intrinsic (un-perturbed) frequency

$$\omega_0^2 = \frac{N^2(z) k_\perp^2}{k^2} + \frac{f^2 k_z^2}{k^2}$$

- Allowed(?) frequency ranges:
 - $f^2 \le \omega_0^2 \le N^2(z)$ internal gravity wave like
 - $N^2(z) \le \omega_0^2 \le f^2$ inertial wave like
- We always use $\overline{\underline{V}} = \overline{V_{\chi}}(y) \hat{x} = \sigma y \hat{x}$

With Background Shear WKB in both y- and z-directions

- One thing that bothers us
 - Exact solution for $k_x = 0$ and constant N_0 is known but NOT satisfied

Exact form:
$$\omega_0^2 = \frac{N_0^2 k_y^2}{k_y^2 + k_z^2} + \frac{f(f - \sigma) k_z^2}{k_y^2 + k_z^2}$$

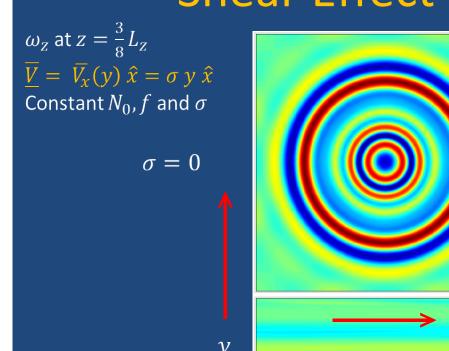
Allowed frequency ranges:

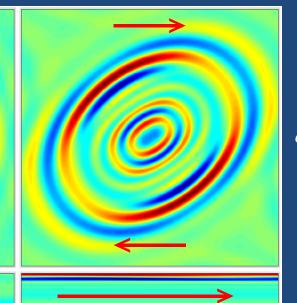
$$f(f - \sigma) \le \omega_0^2 \le N_0^2$$

$$N_0^2 \le ω_0^2 \le f(f - σ)$$

More importantly, one more complexity,
 Critical Layer, might appear

Poincarè Waves (Inertial Wave Branch) Shear Effect in Physical Space

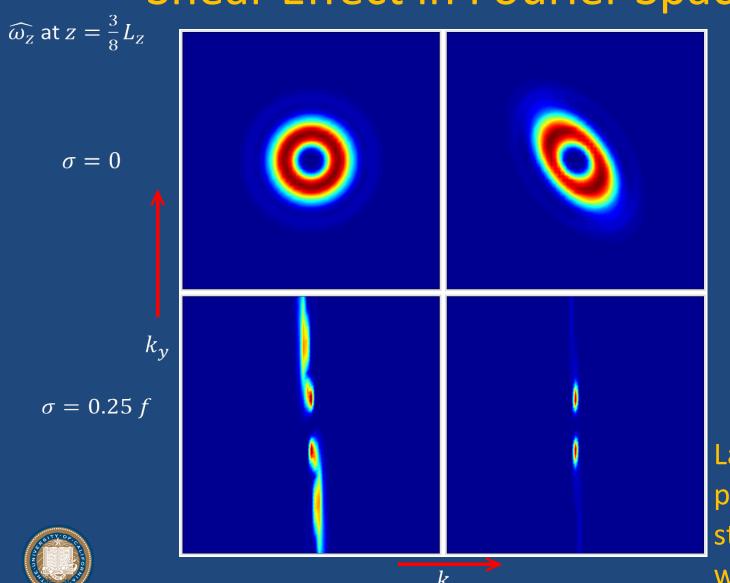




 $\sigma = 0.01 f$

 $\sigma = 0.25 f$

Poincarè Waves (Inertial Wave Branch) Shear Effect in Fourier Space



 $\sigma = 0.01 f$

 $\sigma = 0.75 f$

Large shear flow prefers small stream-wise wave numbers

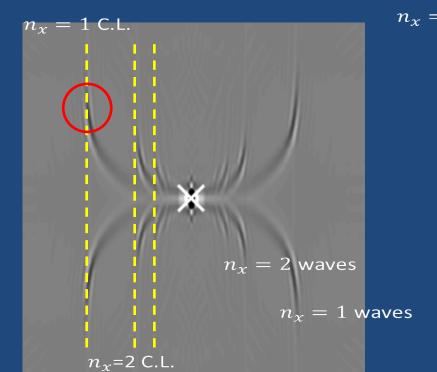
Critical Layer

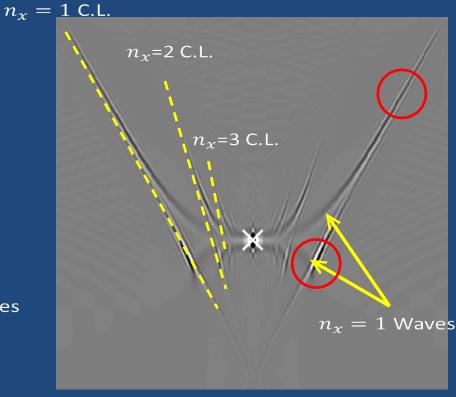
- Rayleigh equation $(\overline{V_x} c)(\phi'' k_x \overline{\phi}) \cdots$ in unidirectional, dissipation-less shear flows with $\overline{V} = \overline{V_x}(y) \hat{x}$
 - At location y_c where an eigenmode's phase velocity $c=\omega/k_x=\overline{V_x}(y_c)$, there is a critical layer
 - Adding stratification, baroclinic critical layer occurs at $y_c = \pm \frac{\omega}{\sigma k_x} \pm \frac{N(z)}{\sigma k_x}$

Wave Packets and Critical Layers

Constant $N(z) = N_0$

Linear
$$N(z) = N_0 (1 + 2 z)$$





 \boldsymbol{Z}

 ω_z at x=0 plane. Dashed lines indicate Baroclinic Critical Layers. $~\sigma/f=$ 3/4 and $f/N_0=2/3$

New Small k_{χ} Dispersion Relation WKB Plus Small k_{χ} Approximations

- $k_x \ll k_v \sim k_z$ for large shear σ
 - Dispersion Relation:

$$\omega = \omega_0 + \underline{k} \cdot \overline{\underline{V}}$$

• Intrinsic frequency:

$$\omega_0^2 = \frac{N^2(z) k_y^2}{k_y^2 + k_z^2} + \frac{f(f - \sigma) k_z^2}{k_y^2 + k_z^2}$$
$$\approx N^2(z) \sin^2 \theta + f(f - \sigma) \cos^2 \theta$$

- Allowed frequency ranges:
 - $f(f \sigma) \le \omega_0^2 \le N^2(z)$
 - $N^2(z) \le \omega_0^2 \le f(f \sigma)$

Cherry Picking Validation: Local Geometric Forms

• Small k_x Dispersion Relation:

$$\omega_0^2(y_l) \approx N^2(z_l) \sin^2 \theta + f(f - \sigma) \cos^2 \theta$$
$$\left(\frac{dz}{dy}\right)^2 \approx \tan^2 \theta \approx \frac{\omega_0^2(y_l) - f(f - \sigma)}{N^2(z_l) - \omega_0^2(y_l)}$$

Textbook dispersion relation:

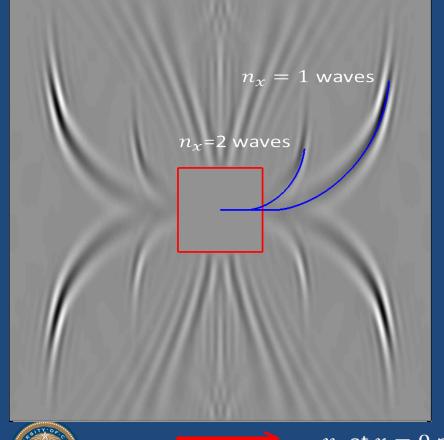
$$\omega_0^2(y_l) \approx N^2(z_l) \sin^2 \theta + f^2 \cos^2 \theta$$

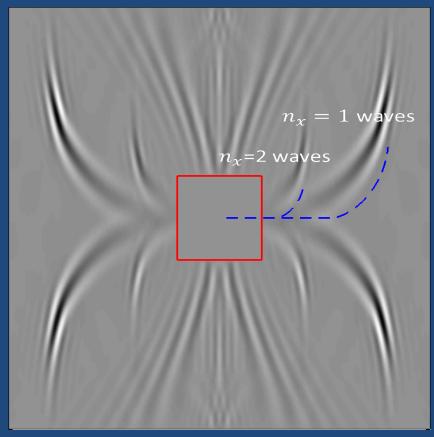
$$\left(\frac{dz}{dy}\right)^2 \approx \tan^2 \theta \approx \frac{\omega_0^2(y_l) - f^2}{N^2(z_l) - \omega_0^2(y_l)}$$

Validation of Small k_x Dispersion Relation Constant N_0 Case

Small k_x Dispersion Relation

Textbook Dispersion Relation





 \boldsymbol{Z}

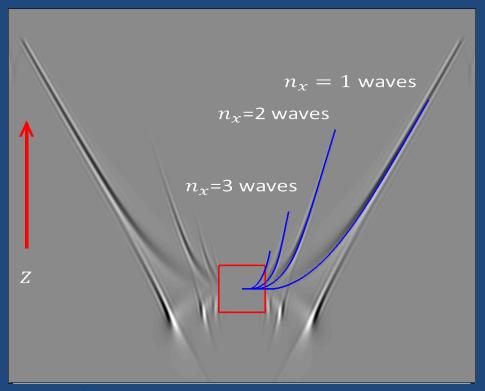
 $v_{\scriptscriptstyle Z}$ at x=0 plane

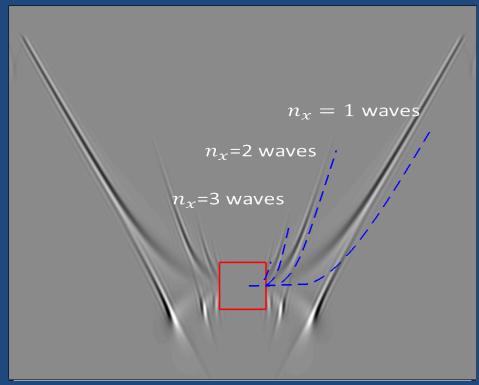
Blue: projection of rays onto x = 0 plane

Validation of Small k_x Dispersion Relation Linear N(z) Case

Small k_x Dispersion Relation

Textbook Dispersion Relation





 v_z at x = 0 plane

Blue: projection of rays onto x = 0 plane

Conclusion

- The new small k_x dispersion relation works much better compared to traditional one
 - Both horizontal and vertical spacing of the lattice structures determined by locations where waves and critical layers have the same stream-wise wave number (n_x) interact at
 - More serious validation of small k_χ dispersion relation is ongoing

